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Abstract
Measurements have been made to test the proposal that the INVAR effect
is associated with a non-collinear ferromagnetic state. Neutron scattering
experiments with polarization analysis of the incident and scattered beams
have been made to obtain the absolute spin-dependent scattering cross-sections
from the archetypal INVAR alloy Fe65Ni35. The measured average spin-flip
cross-section for this alloy has been found to be close to zero, independent of
the scattering vector Q and effectively constant as the sample temperature is
reduced from 300 to 4.2 K and the magnetic field increased from 1.4 to 2.0 T.
All this suggests that the INVAR sample is a collinear ferromagnet. In addition,
the measured spin-flip cross-section is also in poor agreement with calculated
curves based on models of the proposed non-collinear state. The magnitudes
of the magnetic moments on the iron and nickel atoms in the collinear state
have been obtained from the intensities of the Bragg peaks in the non-spin-flip
cross-sections. The diffuse scattering between the Bragg peaks has also been
analysed to determine the magnetic disorder present. These data have been
discussed in the context of different models of the magnetic structure and the
results also support the conclusion that Fe65Ni35 is a collinear ferromagnet.

1. Introduction

Charles-Edouard Guillaume established that face-centred cubic alloys of iron and nickel with
≈35% nickel exhibit an anomalously small thermal expansion over a wide temperature range
(Guillaume 1897). He considered the expansion of these alloys to be ‘invariable’ and this kind
of behaviour has since become known as the INVAR effect. INVAR alloys were historically
used in measuring tapes and in the springs of mechanical watches and more recently in
the shadow masks in colour television and computer screens. The INVAR effect is clearly
related to the ferromagnetism in these alloys, since their coefficient of linear expansion is
typically α = 1.2 × 10−6 K−1 below the Curie temperature and almost an order of magnitude
greater than this in the paramagnetic phase. Macroscopically, the effect can be considered
as a massive, spontaneous, volume magnetostriction, in which a magnetostrictive lattice
distortion balances the normal thermal expansion of the lattice. It has proved more difficult
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to explain the effect satisfactorily on an atomic scale, although it obviously depends on a
strong correlation between the value of the magnetic moment and the atomic volume. Weiss,
for example, proposed a phenomenological, two-γ -state model for face-centred cubic γ -Fe,
in which a high volume ferromagnetic state and a low volume antiferromagnetic state can
co-exist (Weiss 1963). The INVAR effect may be explained within this two-γ -state model,
if the reduction of the magnetization on raising the temperature is caused by excitation of
the low volume antiferromagnetic state, whose presence compensates for the normal thermal
expansion. There appears to be little direct experimental evidence (such as line broadening
in diffraction experiments) for these two states. However, electronic band theory calculations
have predicted a firm correlation between the cell volume and magnetic moment value in
γ -Fe (Bagayoko and Callaway 1983) and the existence of two stable states in γ -FeNi alloys
(Entel et al 1993). Non-collinear ferromagnetism has also been incorporated into electronic
band theory calculations of INVAR (Wang et al 1997). More recently, a calculation which
apparently explained the INVAR effect by making a formal link between the average atomic
volume and the magnitude of the non-collinear magnetic order received considerable publicity
in Nature (van Schilfgaarde et al 1999, Mohn 1999).

We have previously used neutron scattering experiments with polarization analysis of
both the incident and scattered beams to study non-collinear structures in metallic alloy
glasses. We have shown, for example, that non-collinear ferromagnetism exists in Fe83B17

glass (Cowley et al 1988); that complex magnetic structures are present in the pseudo-
binary (Fex Ni1−x)78B12Si10 glasses (Cowley et al 1991); that substitution of ruthenium in
the Fe80−x RuxB20 glasses suppresses the non-collinear state (Wildes et al 1998) and that Fe–
Zr glasses with ≈10% Zr exhibit a range of non-collinear ferromagnetic structures (Wildes
et al 2000).

We have therefore undertaken similar experiments on the archetypal INVAR alloy
Fe65Ni35, specifically to test for the presence of the predicted non-collinear ferromagnetic
state. The analysis of the experimental data suggests however that the Fe65Ni35 sample is a
collinear ferromagnet and this is in agreement with the results of similar neutron scattering
studies (Lynn et al 1994).

2. Polarized beam neutron scattering

Polarized neutron scattering, in which the four spin-dependent neutron cross-sections are
measured, is an ideal technique for studying non-collinear structures in ferromagnets. In one
standard configuration (Moon et al 1969), the co-ordinate reference for the scattering geometry
is defined with y parallel to the scattering vector Q = 4π sin θ/λ and x perpendicular to Q and
in the scattering plane. The direction z is perpendicular to the scattering plane and a saturating
magnetic field is applied in this direction defining the collinear ferromagnetic axis of the
sample. When a neutron passes through the sample with the direction of its spin unchanged,
the so-called non-spin-flip scattering cross-sections, ∂σ ++

∂�
and ∂σ−−

∂�
, can be written

∂σ±±

∂�
= ∂σI I

∂�
+

1

3

∂σN SI

∂�
+

∣∣∣∣
〈∑

i j

(bi ∓ di Szi )(b
∗
j ∓ d∗

j S∗
z j) exp(iQ(ri − r j ))

〉∣∣∣∣. (1)

Here ∂σI I
∂�

and ∂σN S I
∂�

are the isotope incoherent and the nuclear spin incoherent parts of the
differential cross-section. The third term includes the coherent scattering (the Bragg peaks),
plus the diffuse scattering (equivalent to the Laue monotonic scattering with x-rays) due to
presence of two types of atom randomly distributed in the INVAR lattice. In this third term bi

is the nuclear scattering length and the product di Si is the magnetic scattering amplitude, in
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which di = 1
2γ r0gi fi (Q) and fi (Q) is the magnetic form factor of the i th atom which carries

a spin Si and is situated at the position ri . These cross-sections clearly contain information
about the collinear Sz components of the spins.

The corresponding spin-flip cross-sections ∂σ +−
∂�

and ∂σ−+

∂�
may be written

∂σ±∓

∂�
= 2

3

∂σN SI

∂�
+

∣∣∣∣
〈∑

i j

(di Sxi d
∗
j S∗

x j ) exp(iQ(ri − r j ))

〉∣∣∣∣. (2)

Here the second term now depends on the non-collinear Sx components of the spins. If the Sx

components are finite, but the directions of the spins are completely random, then the magnetic
part of the spin-flip cross-section will follow the square of the form factor f 2(Q) and decrease
monotonically with Q.

It is clear from equations (1) and (2) that the presence of spin-flip scattering from
a ferromagnet indicates that the Sx components of the spins are finite and this provides
unequivocal evidence that the magnetic moments must therefore be non-collinear.

3. Sample preparation, experimental method and data analysis

An ingot of approximately 20 g was made of the INVAR alloy Fe65Ni35 by argon arc melting
spectroscopically pure constituents with negligible weight loss. The ingot was cold rolled to
1 mm thick (to improve heat transfer); cut into lengths of approximately 10 cm; annealed under
vacuum at 850 ◦C for 24 h and quenched into iced water to preserve the γ -phase.

The neutron experiments were performed on the IN20 diffractometer at the Institute Laue–
Langevin. Polarizing Heusler alloy crystals were used as monochromator and analyser with
spin flippers in the incident and scattered beams, to obtain the four spin-dependent cross-
sections. Elastic scattering measurements made with an incident wavevector k = 4.1 Å−1 and
horizontal collimators of 60′ gave a wavevector resolution of 2.7 × 10−2 Å−1 and an energy
resolution of 3 meV at Q = 3.1 Å−1. A vertical magnetic field was applied to the sample,
using a superconducting cryomagnet to saturate the domains and avoid depolarization effects.
Three measurements were made at (1.4 T, 300 K); (2 T, 300 K) and (2 T, 4.2 K), over a range
of scattering vectors 1.0 < Q < 6.5 Å−1 and with a data acquisition time of approximately
18 h, because of the low count rates in this type of experiment. Similar scans were made with
an indium ‘blank’ for background subtraction and a standard vanadium sample to obtain the
absolute scattering cross-sections. The efficiencies of the polarizing elements were determined
by measurements of the flipping ratios from the {111} peak of a standard silicon sample.

The data analysis was performed using our own programs, developed through the studies
described above, which are described in Wildes et al (1998). The procedures included
background subtraction; corrections for absorption and multiple scattering; corrections for
incomplete polarization and normalization to the vanadium standard.

An example of the cross-sections obtained is shown in figure 1 from the (2 T, 4.2 K)
measurement. The non-spin-flip cross-sections in figure 1(a) contain the first five Bragg peaks
of the face-centred cubic γ -FeNi phase (and no others), from whose positions the lattice
parameter of the Fe65Ni35 alloy was found to be a = 3.601 ± 0.005 Å. An almost identical
value was obtained at 300 K. These Bragg peaks are superimposed on a background due to the
isotope incoherent and diffuse scattering contributions. The cross-section ∂σI I

∂�
+ 1

3
∂σN S I
∂�

= 0.166
barns sr−1 atom−1 was calculated for this Fe65Ni35 alloy using the standard tables (Sears
1992) and this is close to the observed value. The average of the two spin-flip cross-sections
(equation (2)) is given in figure 1(b) where the vertical scale is 100 times smaller than in
figure 1(a). This average spin-flip cross-section is independent of Q within the error bars.
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Figure 1. The non-spin-flip (a) and the average spin-flip (b) cross-sections for the INVAR alloy
Fe65Ni35 are given in absolute units (2 T, 4.2 K data set). The diamonds in (a) mark the positions
of the Bragg peaks of the fcc γ -phase. Note the change of scale on the ordinate between (a) and
(b).

4. The spin-dependent neutron cross-sections of Fe65Ni35

4.1. The average spin-flip cross-sections

Figure 2 shows the average spin-flip cross-sections from the three experiments (1.4 T, 300 K);
(2 T, 300 K) and (4.2 T, 4.2 K) plotted on an expanded vertical scale. According to equation (2)
the magnitudes of these cross-sections will depend directly on the non-collinear components
of the magnetic spins. The nuclear spin incoherent cross-section in equation (2) was calculated
from the standard tables (Sears 1992) and found to be extremely small ( 2

3
∂σN S I
∂�

= 8.4 × 10−4

barns sr−1 atom−1). The observed average level of the experimental points is actually larger
than this ≈7 × 10−3 barns sr−1 atom−1. It is unlikely that this difference is attributable to a
magnetic contribution to the spin-flip cross-sections, since they are independent of Q. This
residual level of the cross-section is probably as close to the small, calculated value as the
uncertainties in the normalization of the data allow us to reach. To summarize, the average
spin-flip cross-sections for the alloy are found to be

(i) close to zero and
(ii) independent (within error bars) of the scattering vector Q.

Furthermore, the three sets of data are identical to within the error bars, implying they are

(i) independent of the sample temperature and
(ii) independent of the applied magnetic field.

Taken together, these observations suggest that the magnetic contribution to the spin-flip cross-
sections must be negligible. We are therefore led to conclude that the INVAR alloy is a
conventional collinear ferromagnet.

In order to quantify this (null) result further, we have calculated the magnitudes of the
spin-flip cross-section expected from non-collinear structures of the type proposed. If there
are no spatial correlations between the non-collinear components of the magnetic moments,



Search for non-collinear ferromagnetism in INVAR 525

0

0.01

0.02

0.03

Scattering vector Q in Å –1

cr
os

s 
se

ct
io

n 
in

 b
ar

n.
st

er
ad

–
1 .a

to
m

–
1

Figure 2. The average spin-flip cross-sections are plotted in absolute units for the three data sets• = (1.4 T, 300 K); ◦ = (2 T, 300 K) and � = (2 T, 4.2 K). The horizontal dotted line is
the effective nuclear spin incoherent scattering cross-section. The dashed curve is the predicted
magnetic contribution to the cross-section calculated from equation (3), for the SAJ-RT2 model
and the solid curve is the same for the SAJ-RT1 model.

equation (2) becomes

∂σ±∓

∂�
= 2

3

∂σN SI

∂�
+

d2

2
〈S2

x 〉 = 2

3

∂σN SI

∂�
+

d2

2
[S2 − 〈S2

z 〉] (3)

which can be calculated when the 〈S2
x 〉 or 〈S2

z 〉 values are known.
The two models intended to imitate the non-collinear structures predicted to exist in

INVAR have been derived from the figures given in van Schilfgaarde et al (1999). Their
figure 3 (the volume dependence of the magnetic moment) shows that the value of average
moment 〈µ〉 = 1.29 µB we have used for INVAR at 300 K corresponds to an atomic volume
72 < � < 74 au. The individual moments are then µFe ≈ 2.1 µB and µNi ≈ 0.57 µB . Their
figure 2 (for the spin–spin correlation functions) then shows that at this value of atomic volume
�, the moments on the nearest neighbour iron atoms are randomly aligned and the next nearest
neighbour moments are collinear. About one-half of the moments on the nearest neighbour
nickel atoms are collinear and the rest canted at angles ≈40◦ to the collinear direction. There
are 12 first and six second nearest neighbours in the fcc lattice and for a random substitutional
alloy the probability of finding an atom on a given site depends only on the concentration.
This means an average occupation of 〈8Fe/4Ni〉 and 〈4Fe/2Ni〉 in the first two neighbour
shells. We have interpreted the random alignment of the nearest neighbour magnetic moments
in this (SAJ-RT1) model to mean simply that one-third of them point ‘upwards’; one-third
‘horizontally’ and the remainder ‘downwards’. The second model (SAJ-RT2) was obtained
by a simple visual inspection of the four schematic diagrams of the magnetic structures in
figure 1 of van Schilfgaarde et al (1999). At an atomic volume of � = 73.7 au, within the
range considered above, the figure shows that about one-third of the iron moments are aligned
along the direction of net magnetization, one-third at roughly 15◦ from this direction and the
remaining one-third at about 30◦ from it. About half of the magnetic moments on the nickel
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Figure 3. The data points in (a) and (b) show the collinear component of the average magnetic
moment per site µz f (Q) derived from the intensities of the Bragg peaks in the non-spin-flip cross-
sections, compared with the prediction of the EM model, using equation (6). (a)•= (1.4 T, 300 K)◦ = (2 T, 300 K)—note that some of the data points are superimposed. (b) � = (2 T, 4.2 K).

atoms appear to be aligned along the direction of net magnetization and the remainder are
about 10◦ from it.

The magnetic moments and their dSz components for these two (SAJ-RT1 and SAJ-RT2)
models are given in table 1, from which the corresponding cross-sections were calculated using
equation (3). The horizontal dotted curve in figure 2 is drawn at the ‘background’ level of
7 × 10−3 barns sr−1 atom−1 and represents the isotropic incoherent scattering, while the dashed
curve represents the magnetic contribution for the SAJ-RT2 model. The solid curve is that for
the SAJ-RT1 model, where the magnetic contribution is larger because of the random directions
of the magnetic moments on the iron atoms. The Q dependence of the calculated cross-sections
of both these models is obviously incompatible with the experimental data and reinforces the
conclusions that INVAR is a collinear ferromagnet on the basis of this experimental evidence.

4.2. The non-spin-flip cross-sections

The analysis in the section above points to the presence of collinear ferromagnetism in
the INVAR alloy and equation (1) shows that the non-spin-flip cross-sections will contain
information about the collinear components of the magnetic spins. The magnitudes of the
non-spin-flip cross-sections ∂σ ++

∂�
and ∂σ−−

∂�
, are different at the same Bragg peak depending on
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Table 1. The values of the magnetic moments and spin components are given for two non-collinear
structures of Fe65Ni35 INVAR at 300 K, which have been used to calculate the cross-sections shown
in figures 2 and 5.

Temperature 300 K

µFe = 2.1 µB µNi = 0.57 µB

Percentage of Collinear
Model Atom total component

SAJ-RT1 Fe 55 Sz

Fe 22 0
Fe 22 −Sz

Ni 67 Sz

Ni 33 Sz cos 40◦

SAJ-RT2 Fe 33 Sz

Fe 33 Sz cos 15◦
Fe 33 Sz cos 30◦
Ni 50 Sz

Ni 50 Sz cos 10◦

the sign inside the third term of equation (1). The average magnetic scattering amplitude 〈dSz〉
per atom can be obtained in absolute units, from the ratio R of the magnitudes of each of the
five Bragg peaks,

R = ∂σ−−

∂�

/
∂σ ++

∂�
=

〈
b + dSz

b − dSz

〉2

, (4)

and from this the collinear component of the mean magnetic moment per atom (µz in Bohr
magnetons) can be derived,

〈dSz〉 = 1
2γ r0〈gSz f (Q)〉 = 0.2695 × 1012〈µz f (Q)〉 cm. (5)

In fact, it is convenient to compare the experimental values of µz f (Q) with those
calculated for various models of the magnetic structures, over the measured Q range,

µz f (Q) = 0.65µFe fFe(Q) + 0.35µNi fNi(Q). (6)

This can be done using the tabulated five-parameter fits to the magnetic form factors
(Brown 1995).

In the simplest model of INVAR, the iron and nickel atoms can be considered to have the
same values of saturation magnetic moment as in their elemental metals, µFe = 2.22 µB and
µNi = 0.606 µB and this will be referred to as the EM model. The average magnetic moment of
the Fe65Ni35 alloy is then µz = 1.66 µB at 4.2 K, close to the value (1.58 µB)obtained from bulk
magnetic measurements (Crangle and Hallam 1963, Wassermann 1990). The corresponding
values at room temperature µFe = 1.73 µB and µNi = 0.47 µB can be obtained by scaling the
saturation values, using the spontaneous magnetization curves M(T )/M0 (Yamada et al 1982,
Yamada and du Trémolet de Lachessserie 1984).

Only poor agreement was obtained between experiment and calculation when the f +
Fe(Q)

and f +
Ni(Q) form factors expected for an itinerant ferromagnet were used in equation (6). The

f +
Fe(Q) form factor falls more rapidly with Q than f +

Ni(Q) and so the f 3+
Fe (Q) form factor was

substituted. The results of this calculations are shown in figures 3(a) (1.4 T, 300 K, 2 T, 300 K)
and (b) (2 T, 4.2 K) and the level of agreement with the data is quite satisfactory. Note that
apart from the substitution of the f 3+

Fe (Q) form factor for the f +
Fe(Q) there are no adjustable

parameters between the calculated lines and the data points in figure 3.
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Table 2. The values of the magnetic moments are given for three collinear structures of Fe65Ni35
INVAR. The EM model has been used with the tabulated magnetic form factors, to calculate the
continuous curves in figures 3(a) and (b) and the EM-4K model used to calculate the cross-sections
shown in figure 4.

Magnetic moment value in µB

Model Temperature (K) Fe Ni 〈mean〉
EM 4.2 2.22 0.61 1.66

300 1.73 0.47 1.29

D3 4.2 (estim) 3.20 1.20 2.50
300 2.02 1.37 1.79

SAJ-4K 4.2 2.45 0.63 1.81

Two other possible models of the magnetic structure of INVAR were also examined.
One was based on the recent polarized neutron diffraction measurements (Brown et al 2000,
2001) made on single crystals of Fe65Ni35 using the D3 diffractometer at the ILL. The magnetic
moment values obtained in this work are rather large and the ratio of their values µFe/µNi ≈ 1.5
is quite different from that for the EM model µFe/µNi ≈ 3.7—see table 2. The calculated
curve for this (D3 model) was in poor agreement with the data points, particularly with the
(2 T, 4.2 K) data. The other model was based on the prediction (van Schilfgaarde et al 1999,
their figure 3(a)) that the magnetic moment values are slightly greater than the elemental ones
at the largest values of atomic volume. These larger moment values (SAJ-4K model of table 2)
led to reasonable agreement with the (2 T, 4.2 K) data of figure 3(b), but a less satisfactory
description of the diffuse scattering which will be discussed below.

4.3. The diffuse component of the non-spin-flip cross-sections

The magnitude of the non-spin-flip cross-sections between the Bragg peaks is obtained from
equation (1),

∂σ±±

∂�
= ∂σI I

∂�
+

1

3

∂σN SI

∂�
+

∂σDi f f

∂�
(7)

where the third term arises from the presence of the two types of atom (each with its own value
of magnetic moment) randomly distributed in the lattice,

∂σ±±
Di f f

∂�
= 〈(b ∓ dSz)

2〉 − 〈(b ∓ dSz)〉2. (8)

The cross-sections in equation (7) were calculated for all the models described above together
with the tabulated data for the incoherent cross sections. Figure 4 shows the result for the EM
model at 4.2 K, superimposed on the measured (2 T, 4.2 K) data plotted on an extended vertical
scale. The data points of the two cross-sections overlap within the error bars and the calculated
cross-sections follow the trend of the data points. This simple EM model therefore provides a
satisfactory description of the data at 4.2 K. The average spin-flip cross-section is also shown
on the same scale In all these models INVAR is accepted to be a collinear ferromagnet at
4.2 K, so this spin-flip cross-section is just from the nuclear spin incoherent scattering which
is independent of Q. Figure 5 shows the calculated cross-sections for the EM model at room
temperature 300 K, superimposed on the (2 T, 300 K) data. The agreement is again quite
satisfactory. The non-spin-flip cross-sections were also calculated for the two non-collinear
models (SAJ-RT1 and SAJ-RT2) and the two dotted curves in figure 5 are for the SAJ-RT1
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Figure 5. The non-spin-flip cross-sections for the (2 T, 300 K) data set are shown for comparison
with figure 4. The continuous curves are the cross-sections calculated for the EM-RT model and
the dotted curves for the SAJ-RT1 model.

model that has the greatest degree of magnetic disorder. The exaggerated Q dependence of
these cross-sections does not provide a good fit to the data points.

5. Discussion and conclusions

The spin-dependent scattering cross-sections of the INVAR alloy Fe65Ni35 have been obtained
by polarized beam neutron scattering measurements, to test for the presence of a non-collinear
ferromagnetic state.

The principal finding is that the average spin-flip cross-sections for this alloy are close to
zero. All three data sets (1.4 T, 300 K), (2 T, 300 K) and (2 T, 4.2 K) can be superimposed within
their error bars, indicating that they are independent of temperature and applied magnetic
field. Their sum is independent of the scattering vector Q and completely lacks the form-
factor dependence of the cross-sections predicted for the model non-collinear ferromagnetic
structures examined. Taken together these observations imply that the Fe65Ni35 INVAR alloy
sample is likely to be a conventional collinear ferromagnet. This conclusion is also supported
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by the inelastic polarized neutron beam measurements of Lynn et al (1994), which are closely
related to our present work.

In addition, the intensities of the Bragg peaks in the non-spin-flip cross-sections have
been measured to obtain the values of the (collinear components) of the magnetic moments
on the iron and nickel atoms. Good agreement is obtained with the experimental data using a
simple model based on a collinear structure in which the iron and nickel atoms have magnetic
moment values similar to the ones in their elemental metals. The magnitudes of the non-spin-
flip cross-sections between the Bragg peaks have also been examined. They have been shown
to be consistent with the sum of the nuclear incoherent scattering and the diffuse scattering
contributions due to the presence of the two types of atom, with their two different values of
magnetic moment in the INVAR lattice.
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